Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chellamuthu

Muthamizhchelvan, ${ }^{\text {a }}$ Kolandaivelu Saminathan, ${ }^{\text {b }}$ Krishnan SethuSankar, ${ }^{\text {c }}$ Jan Fraanje, ${ }^{\mathbf{d}}$ Rene Peschar ${ }^{\text {d }}$ and Kandasamy Sivakumar ${ }^{\text {e }}$ *
${ }^{\text {a }}$ Department of Physics, SRM Engineering College, Kattankulathur 603 203, India,
${ }^{\mathbf{b}}$ Department of Physics, Anna University, Chennai 600 025, India., 'Department of Physics, RKM Vivekananda College, Chennai 600 004, India, daboratory of Crystallography, Institute of Molecular Chemistry, University of Amsterdam, Achtergracht 116, 1018 WV, Amsterdam, The Netherlands, and ${ }^{\mathbf{e}}$ Department of Physics, Anna University, Chennai 600 025, India

Correspondence e-mail: surya@annauniv.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.159$
Data-to-parameter ratio $=13.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Dimethylammoniomethyl-6,8-dimethyl-2-phenyl-1,2-dihydroimidazo[1,2-a][1,8]naphthyridine picrate monohydrate

In the title salt, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the dimethylammoniomethyl side chain is oriented nearly perpendicular to the imidazonaphthyridine moiety, which is nearly planar. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link two cations, two anions and two water molecules into clusters, which further interact via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Picric acid forms crystalline picrates with various organic molecules and such picrates are convenient for the identification and qualitative analysis of the relevant organic compounds (Takayanagi et al., 1996). The formation of picrates is a common method for the conversion of liquids into stable tractable solid compounds and in many cases it yields crystalline solids, which lead to the determination of their molecular structures (Saleh et al., 1997). Imidazo[1,2-a][1,8]napthyridine derivatives are reported to possess potential antibacterial and photophysical activities (Kondo et al., 1990; Vijila et al., 2000). The crystal structures of a number of imidazonaphthyridine derivatives have been determined in order to understand their structures and conformations (Fun et al., 1996; Sivakumar et al., 1996a,b). The title imidazonapthyridine picrate complex, (I), was prepared in order to understand the possible protonation site among the different amino positions. In addition, the nature and directionality of the specific $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the protonated N atom is of interest.

(I)

In the picrate anion (Fig. 1), the bond lengths and angles (Table 1) are normal and comparable with those found in the literature (Allen et al., 1987; SethuSankar et al., 2003; Muthamizhchelvan, Saminathan, SethuSankar et al., 2005).

Received 7 July 2005
Accepted 9 August 2005
Online 12 August 2005

Figure 1
View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A cluster in (I) formed by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines).

The twist angles of the three nitro groups attached to the benzene ring at atoms $\mathrm{C} 2, \mathrm{C} 4$ and C 6 are 7.74 (2), 2.16 (2) and $25.04(1)^{\circ}$, respectively. In fact, one ortho nitro group (O2$\mathrm{N} 1-\mathrm{O} 3)$ is more coplanar with the benzene ring than that found in other picrates, where both ortho-nitro groups have higher twist angles with the benzene ring. This is due to the steric interactions between the neighbouring parallel anions, with a separation distance of 3.366 (3) \AA.

In the cation, the $\mathrm{C} 19-\mathrm{N} 7$ bond distance of 1.514 (2) \AA is longer than the values reported $[1.475$ (2), 1.466 (2) and $1.466(2) \AA$ for neutral imidazonaphthyridine structures (Sivakumar et al., 1996b). The endocyclic angles at C9 [121.1 (2) ${ }^{\circ}$] and N6 [121.7 (1) ${ }^{\circ}$] are expanded, while at C14 [117.9 (1) $)^{\circ}$] it is contracted. This effect is probably caused by the fusion of the five-membered ring with the six-membered ring, resulting in angular distortion rather than in bond-length distortion (Allen, 1981). The average $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle around atom N 7 [111.3 (1) ${ }^{\circ}$] is slightly less than the reported value of
115.8 (1) ${ }^{\circ}$ in 1-diethylaminophenyl-2-(4-methoxyphenyl)-6,8dimethylimidazo $[1,2-a][1,8]$ naphthyridine and $113.6(5)^{\circ}$ in $2-$ (4-bromophenyl-1-diethylaminomethyl-6,8-dimethylimidazo-[1,2-a][1,8]naphthyridine (Sivakumar et al., 1996b) and is justified by the protonation of this atom, which makes perfect tetrahedral bonding. The imidazonaphthyridine system is almost planar; the dihedral angles formed by the four rings, viz. N4/C7/N6/C15/C16, N5/C10-C14, N6/C7-C10/C14 and C22-C27, are in the range 2.85 (6)-4.6 (1) ${ }^{\circ}$. The mean plane is found to lie on the crystallographic (210) plane. The torsion angle $\mathrm{N} 6-\mathrm{C} 15-\mathrm{C} 19-\mathrm{N} 7$ of 81.6 (2) ${ }^{\circ}$ describes the orientation of the dimethylaminomethyl side chain as $(+)$ synclinal about C15-C19.

The protonated N7 atom of the cation participates in a bifurcated hydrogen bond (Table 2), viz. an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond with atom N 5 and an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the solvent water molecule. The intramolecular hydrogen bond forms an $S(7)$ ring. The observed intermolecular $\mathrm{N} 7-\mathrm{H} 7 \mathrm{~N} \cdots \mathrm{O} 1 W$ hydrogen bond is weak and peculiar for picrates, where the protonated N atom tries to make strong and more linear N $\mathrm{H} \cdots \mathrm{O}$ bonds with the anionic (picrate) molecules (Muthamizhchelvan, Saminathan, Fraanje et al., 2005). The present hydrogen-bonding pattern (Table 2) suggests that two cations, two anions and two solvent water molecules are linked into a cluster (Fig. 2) via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The $\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1$ and $\mathrm{O} 1 W-$ $\mathrm{H} 2 W \cdots \mathrm{O} 6$ hydrogen bonds form a cyclic pattern with a graphset descriptor $R_{4}^{4}(16)$ (Bernstein et al., 1995). The crystal packing (Fig. 3) is further stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and van der Waals forces.

Experimental

The title compound was prepared from an ethanol solution containing equimolar amounts of picric acid and 1-dimethylamino-methyl-6,8-dimethyl-2-phenyl-1,2-dihydroimidazo[1,2-a][1,8]naphthyridine at room temperature. Yellow prism-shaped single crystals were obtained by slow evaporation of the ethanol solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=577.56$
Triclinic, $P \overline{1}$
$a=7.1449$ (8) \AA 。
$b=12.1932$ (7) \AA
$c=15.790$ (2) \AA
$\alpha=102.435(4)^{\circ}$
$\beta=98.938(6)^{\circ}$
$\gamma=92.123(5)^{\circ}$ 。
$V=1323.5$ (2) \AA^{3}

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.621, T_{\max }=0.725$
6062 measured reflections
5289 independent reflections
4513 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.449 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=15-50^{\circ} \\
& \mu=0.92 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.50 \times 0.40 \times 0.35 \mathrm{~mm} \\
& \\
& R_{\text {int }}=0.056 \\
& \theta_{\text {max }}=74.9^{\circ} \\
& h=-8 \rightarrow 8 \\
& k=-14 \rightarrow 14 \\
& l=-8 \rightarrow 19 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \quad \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.159$
$S=1.10$
5289 reflections
392 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{aligned}
w= & 1 /[
\end{aligned} \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0781 P)^{2} \\
& \quad \\
& \quad+0.5163 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0061(7)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.233(2)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.438(2)$
O2-N1	$1.209(2)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.456(3)$
O3-N1	$1.223(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.453(3)$
O4-N2	$1.221(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.457(3)$
O5-N2	$1.223(2)$	$\mathrm{N} 7-\mathrm{C} 21$	$1.486(3)$
O6-N3	$1.211(2)$	$\mathrm{N} 7-\mathrm{C} 20$	$1.488(2)$
O7-N3	$1.205(2)$	$\mathrm{N} 7-\mathrm{C} 19$	$1.512(2)$
N1-C2	$1.456(3)$		
C16-C15-C19-N7	$-109.0(2)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 22-\mathrm{C} 23$	$-5.2(3)$
N6-C15-C19-N7	$81.5(2)$	$\mathrm{N} 4-\mathrm{C} 16-\mathrm{C} 22-\mathrm{C} 27$	$-3.9(2)$
N4-C16-C22-C23	$175.25(17)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 22-\mathrm{C} 27$	$175.66(18)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H7N \cdots O1W	0.95 (3)	2.20 (3)	2.919 (3)	132 (2)
N7-H7N \cdots N5	0.95 (3)	2.21 (3)	2.899 (2)	129 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 1$	0.87 (4)	1.96 (4)	2.768 (3)	154 (3)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O}^{\text {i }}$	0.91 (5)	2.06 (5)	2.952 (3)	167 (4)
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 5^{\text {ii }}$	0.93	2.55	3.474 (3)	173
C26-H26 . ${ }^{\text {O }} 6^{\text {ii }}$	0.93	2.54	3.440 (3)	163
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{C} \cdots \mathrm{O} 4^{\text {iii }}$	0.96	2.54	3.416 (3)	152
$\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{O} 1$	0.96	2.59	3.489 (3)	156
Symmetry codes: $-x+1,-y+2,-z+$	$-x+2,-y+1,-z+1 ;$		(ii) $\quad x-$	-1 ; (iii)

All H atoms were located in a difference Fourier map. The Cbound H atoms were refined as riding on their parent atoms, with $\mathrm{C}-$ $\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$, while the $\mathrm{N} 7-$ and $\mathrm{O} 1 W$-bound H atoms were refined isotropically.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr. H. Schenk, Laboratory of Crystallography, Institute of Molecular Chemistry, University of Amsterdam, for his encouragement and help in the data collection and Dr Swee-Ong Chua, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia, for supplying the parent compound.

Figure 3
The crystal packing of (I), viewed approximately down the a axis. The intermolecular hydrogen bonds are shown as dashed lines.

References

Allen, F. H. (1981). Acta Cryst. B37, 900-906.
Allen, F. H., Kennard, O., Watson, D. G.,Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fun, H.-K., Sivakumar, K., Chua, S. O, Ooi, M. F., Anwair, M. A. S., Gan, E. K. \& Jackson, W. R. (1996). Acta Cryst. C52, 2231-2236.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. \& Tsukamoto, G. (1990). J. Med. Chem. 33, 2012-2015.
Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005). Anal. Sci. 21, x61-x62.

Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. \& Sivakumar, K. (2005). Acta Cryst. E61, o1546-o1548.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Saleh, M. I., Salhin, A., Saad, B., Sivakumar, K. \& Fun, H.-K. (1997). Z. Kristallogr. 212, 107-108.
SethuSankar, K., Saravanan, S., Velmurugan, D. \& Parvez, M. (2003). Acta Cryst. C59, o156-o158.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sivakumar, K., Fun, H.-K., Chua, S. O., Ooi, M. F., Anwair, M. A. S., Gan, E. K. \& Jackson, W. R. (1996a). Acta Cryst. C52, 2236-2239.
Sivakumar, K., Fun, H.-K., Chua, S. O., Ooi, M. F., Anwair, M. A. S., Gan, E. K. \& Jackson, W. R. (1996b). Acta Cryst. C52, 2239-2243.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. \& Goto, M. (1996). Chem. Pharm. Bull. 44, 2199-2204.
Vijila, C., Ramalingam, A., Gowri, V. S., Chua, S. O. \& Sivakumar, K. (2000). Spectrochim. Acta, A56, 983-989.

